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Abstract: Breast cancer remains the leading cause of cancer-related deaths in women worldwide.
Current screening regimens and clinical breast cancer risk assessment models use risk factors such
as demographics and patient history to guide policy and assess risk. Applications of artificial
intelligence methods (AI) such as deep learning (DL) and convolutional neural networks (CNNs) to
evaluate individual patient information and imaging showed promise as personalized risk models.
We reviewed the current literature for studies related to deep learning and convolutional neural
networks with digital mammography for assessing breast cancer risk. We discussed the literature
and examined the ongoing and future applications of deep learning techniques in breast cancer
risk modeling.
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1. Introduction

Breast cancer remains the leading cause of cancer-related deaths in women world-
wide [1], underscoring the vital importance of early detection and diagnostic screening for
lesions or imaging phenotypes that may be indicative of cancer via screening modalities
such as mammography. The current clinical models that dictate screening recommenda-
tions include established breast cancer risk factors such as later age at first birth, nulliparity,
higher family income, and first-degree family history of breast cancer [2]. In addition, risk
factors such as familial or genetic predisposition were also studied extensively. Mutations
of the BRCA 1 and 2 genes, first documented in 1994 and 1995, account for 5-10% of breast
cancer cases [3]. Familial and genetic predisposition accounts for 15% to 20% of diagnosed
cases. While these risk factors explain such a significant proportion of diagnosed cases,
the majority of breast cancer cases occur in women considered to be at average risk. Deep
learning algorithms demonstrated effectiveness in various applications, including cancer
detection and classification, making them valuable tools in identifying imaging biomarkers
that may be indicative of breast cancer risk. When paired with a screening mammography
exam, DL methods can calculate individual cancer risk separate from currently used clini-
cal factors. In this review, our focus is to examine current studies utilizing deep learning
techniques for breast cancer risk prediction using mammographic images.

Existing reviews in this domain included work from Acciavatti et al. [4], who com-
prehensively overviewed the utilization of DL methods across various imaging modalities
from mammography and tomography to ultrasound and MRI, encapsulating the diverse
landscape of risk modeling approaches in current practice. Similarly, Gastounioti et al.
reviewed the application of DL methods applied to mammography in breast density
evaluation and risk assessment [5]. We provide an updated analysis of the fast moving
development of DL techniques for risk assessment. CNNs offer a promising avenue in this
field due to their capability to handle high-dimensional data, thus making them ideal for
the analysis of medical imaging data. Specifically, we review the application of CNNs for
regressing continuous cancer risk scores from a standard mammographic study. Given the
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highly parameterized nature of CNNs and their requirement for substantial input data for
training, mammography was chosen as the primary imaging modality. This decision stems
from the substantial existing data repository of mammographic studies, which can facilitate
the efficient training and performance assessment of CNNs. The purpose of this paper is
to review the trends in scale, architecture, risk factors, and clinical factors that potentially
influence the performance of CNNSs in assessing breast cancer risk.

1.1. Screening Guidelines

Breast cancer screening guidelines are fundamental in determining a patient’s risk
category as modeled by traditional risk factors. However, as Ren et al.’s systematic review
pointed out, there is a significant variation in screening guidelines across different countries,
even within the United States [6,7]. This inconsistency poses challenges to providing
consistent patient care.

Personalized breast cancer risk assessment tools could help facilitate more effective
screening guidelines, avoiding over-screening and unnecessary treatment while improving
early cancer detection. High-risk patients may benefit from supplemental screening.

Individual risk assessment is possible with mammography, offering personalized
imaging based on a patient’s unique characteristics. This shift from traditional population-
level cancer risk models could improve the efficacy of screening guidelines. In the next
section, we discuss traditional risk models and their influence on current screening recom-
mendations, as well as potential improvements that can be made through advanced DL
methods and individualized risk modeling.

1.2. Cancer Risk Models

Many breast cancer risk prediction models were developed over the past few decades.
The Gail model, one of the first models proposed for breast cancer risk prediction, was
extensively used and validated since it was developed in 1989 [8]. The Breast Cancer
Surveillance Consortium (BCSC) and Tyrer-Cuzick models, which consider factors such as
mammographic breast density, age, race/ethnicity, family history, and prior breast biopsies,
were also used and validated to predict breast cancer risk [9].

The Gail, BCSC, and Tyrer-Cuzick breast cancer risk prediction models are commonly
recommended for use in primary care settings. However, in clinical practice, these models
often yield inconsistent results. Schonberg et al. found that the breast cancer risk estimates
provided by these models poorly aligned with patient outcomes. Consequently, the use of
these models resulted in inconsistent clinical recommendations, particularly for women in
their 40s [10]. In a review conducted by Kim and Bahl in 2021, the performance of various
risk prediction models was evaluated. The modified Gail/BCRAT models demonstrated
an area under the receiver operator characteristic curve (AUC) of 0.58-0.74, BCSC models
had an AUC of 0.61-0.67, and Tyrer-Cuzick models had an AUC of 0.71-0.75 [11].

1.3. Imaging Features for Risk Evaluation

The initial version of the Tyrer—-Cuzick model did not account for imaging features
such as breast density in cancer risk assessment. Women with over 50% mammographically
dense breast tissue are at 3- to 5-fold greater risk for breast cancer compared to those with
less than 25% dense breast tissue [12]. Around 64% of cancer diagnoses following routine
screening mammography occur in women with dense breasts [13]. Risk prediction models
that incorporate breast density demonstrate better performance than models relying solely
on clinical factors. Tice et al. showed that models which incorporated measures of breast
density were more effective at estimating the 5-year risk for invasive breast cancer [14].

Although the amount of breast density is a known risk factor, quantifying breast
density is subjective and can vary widely amongst radiologists. Breast imaging reporting
and data system (BI-RADS) was formed to standardize breast density assessment; however,
visual assessment of mammographic density is prone to inter-and intra-reader variability.
In addition, approximately half of the women in the US between the ages 40 and 74 years
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are classified as having dense breasts, making its use as a cancer risk factor less useful on
an individual basis [15].

There is a need for a better and more reliable method of assessing breast cancer risk
on an individual basis. Most current models provide risk estimates only at the population
level [15]. An accurate assessment of a woman'’s individual risk for developing breast
cancer is necessary to guide personalized screening and prevention strategies. Women
determined to be high risk can be offered more frequent surveillance and/or preventative
measures such as surgery and chemoprevention therapy.

1.4. Al and Risk Assessment

Contemporary Al techniques involve data driven approaches, including deep learning
(DL) and convolutional neural networks (CNNs). DL architectures consist of layers of
interconnected and trainable neurons arranged into a network. The CNN, a DL architecture
utilizing layers of convolution operations, is the most popular architecture for image-based
models. These convolutional layers serve as image feature extractors, and when paired
with fully connected neuron layers can be used for object detection, segmentation, and
classification, to name a few [16-19]. CNNs can be applied to a patient’s mammography
study with or without existing risk factors to calculate a patient specific breast cancer
risk, an example architecture is depicted in Figure 1 below. This powerful technique
was paired with many techniques within mammography including lesion detection and
classification. We aimed to review the use of CNNs for a regression problem, that is,
producing a continuous risk score from input of a normal mammographic study. Because
CNNs are highly parameterized and require large amounts of input data to train, the
mammographic study was chosen over other imaging modalities here because of the large
existing base of data.

Mammography
Study

—‘ [ = — Risk Seorc

convolution BN+ Rell
7 max pooling

7 Fully Conneeted

Figure 1. A typical CNN architecture for risk score prediction from images uses stacks of convolu-
tional layers followed by fully connected layers.

2. Methods

A search was conducted on 21 May 2023 with PubMed using the following keywords:
Deep Learning, Convolutional Neural Networks, Mammography, and Breast Cancer Risk.
Studies that discussed the utilization of deep learning techniques, such as artificial neural
networks (ANN), convolutional neural networks (CNN), or transformer networks, for
modeling short term breast cancer risk based on mammographic input were included in
the review. In total, 78 studies were found, of which 51 were original studies. Studies
that used DL methods for different tasks outside of breast cancer risk prediction, such as
density assessment (13), lesion and microcalcification detection (4), classification (4), and
segmentation (6) were excluded from the review. Articles not utilizing mammographic
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images (4) or utilizing mammography for tasks outside of cancer (1) were excluded. In
total, 23 manuscripts were included in this review.

The number of examinations and the number of patients used in the training of the
CNN model as well as the number of studies or patients that would later develop cancer
were gathered when reported. CNN architectures, including the number of convolutional
layers and specific techniques such as residual and dense connections, and inception and
transformer methods were noted. All studies compared short term cancer risk (<5 years)
or masking risk and not lifelong risk of cancer. Performance statistics for the most highly
performing model from each study were aggregated and tabulated.

3. Study Selection
3.1. Small Scale Studies

Many small-scale studies involving fewer than 1000 cases also demonstrated the utility
of CNNs for evaluating cancer risk. These studies tend to use a case—control cohort to
train DL models, resulting in much smaller datasets upon which to train models. In these
studies, short term cancer risk is assessed by analyzing images from normal mammograms
prior to confirmed diagnosis.

Several studies studied short term risk by training CNNs to predict patients that
would later be diagnosed with cancer. Arefan et al. trained a CNN-based short term
cancer risk model with the prior normal mammogram exams from a 113-case cohort of
226 patients who underwent general population breast cancer screening [20]. A GoogLeNet-
LDA CNN was employed to predict whether a patient would later develop breast cancer.
The model achieved an AUC of 0.73 when using both MLO and CC views, outperforming
the traditional imaging marker of percent breast density as a breast cancer risk predictor
and showing reasonable performance for DL-based breast cancer risk marker. This study,
however, needs validation from larger studies.

Kallenberg et al. [21], in 2018, also used CNNs to predict short term breast cancer
risk from prior normal mammogram exams. They applied unsupervised deep learning to
segment dense breasts, calculate breast density, and, subsequently, predict cancer risk on a
dataset of 493 mammograms from healthy women in the Dutch breast cancer screening
program and 668 mammograms from the Mayo mammography health study (MMHS)
cohort. In total, 394 cancer cases and 1182 healthy control cases were used. A four-layer
CNN-based model paired with a sparse autoencoder and softmax classifier was trained on
24 x 24-pixel patches. On validation, the risk model achieved an AUC of 0.57 (0.54-0.61).
The performance was likely limited by low training numbers, shallow CNNs, and a risk
model based on breast density.

Maghsoudia et al. [22] also used a dataset of 6368 normal mammographic exams from
414 women who later developed breast cancer an average of 4.7 years later and 1178 age
matched controls to train a breast cancer risk assessment model. The CNN model was
trained on bilateral CC and MLO images from the dataset to remove the pectoralis muscle
and segment the dense vs. fatty tissue for breast density estimation from which cancer risk
is calculated. This methodology, called Deep-LIBRA PD, yielded an AUC of 0.612 when
paired with the four views of a screening mammography exam. Similar to the previous
study, deep learning was used to calculate breast density, then used to model risk, meaning
that the risk was predicted only by density.

Ha et al. also used prior normal screening mammograms from 737 of average risk
women, 210 of which would later develop breast cancer. A CNN-based model, independent
of the established measures of breast density, stratified breast cancer risk effectively [17].
Using a 21-layer CNN, the risk model was trained to predict the probability of later
developing cancer. Overall, the model achieved an accuracy of 72% (95%CI, 69.8-74.4) in
predicting patients who would develop breast cancer. In a follow up retrospective study
with 23,467 consecutive patients, of which 121 would later develop cancer, the same CNN
breast cancer risk model performed at an AUC of 0.654 compared to the 0.624 AUC of the
breast cancer surveillance consortium model [23].
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CNN’s were also shown to be effective predictors of masking risk. Gastounioti et al.
used contralateral mammogram studies from 106 women with unilateral invasive breast
cancer and 318 age matched controls to train a CNN fused with traditional texture features
to predict breast cancer risk [24]. The CNN architecture used 29 traditional texture features
including gray level histogram, co-occurrence, run length, and structural features fused
with two convolutional layers terminating in a logistic regressor. The model returned
strong case—control classification performance with an AUC of 0.9 at a sensitivity of 0.81
and specificity of 0.98.

Li et al. [25], in 2017, showed the effectiveness of CNNs in evaluating both short term
breast cancer risk as well as masking risk. The CNN model was trained on 456 mammog-
raphy cases from 53 high-risk BRCA1/2 mutation patients, 75 high risk unilateral cancer
patients, and 328 low risk patients. The CNN was compared to conventional computerized
radiographic texture analysis (RTA). A fusion CNN-RTA classifier was also compared.
BRCA1/2 versus low-risk discrimination performance was evaluated for area under the
receiver operator characteristic curve (AUC) of 0.82 for RTA, ROC of 0.82 for CNN, and
ROC 0.86 for fusion. Unilateral cancer prediction yielded AUC of 0.73 for RTA, AUC of
0.82 for CNN, and AUC of 0.84 for fusion in predicting unilateral cancer versus low risk.
This indicates that CNN techniques performed at least at the same level as conventional
techniques and, when fused, produced a better performance than each alone.

3.2. Towards Clinical Validation

Moving towards clinical validation, recent studies began to explore larger-scale
datasets to assess the generalization of CNN-based models in breast cancer risk prediction.
While earlier studies focused on smaller cohorts, more recent investigations involved sub-
stantial datasets consisting of thousands of cases from multiple institutions. These datasets
were often assembled by sequential accession, better approximating a more representative
cancer prevalence compared to smaller studies.

Wanders et al. used a patch-based three-layer CNN to model cancer risk using mam-
mograms from a large cohort of 51,400 women, 898 of whom would be diagnosed with
breast cancer within 2 years after their last mammogram, as indicated in the Netherlands
Cancer Registry [26]. Cox proportional hazard analyses determined associations between
texture pattern scores, volumetric density, and breast cancer risk. Discriminatory perfor-
mance was evaluated using c-indices. CNN scores were positively associated with breast
cancer risk (HR: 3.16, p < 0.001 for Q4 vs. Q1) with a c-index of 0.61. Classic imaging
biomarkers as dense volume and percentage dense volume also showed positive associa-
tions with breast cancer risk (HR: 1.85 and HR: 2.17, respectively, p < 0.001 for Q4 vs. Q1).
Fusion CNN and classic markers yielded c-index of 0.62 (p < 0.001). Deep-learning-based
texture pattern scores on digital mammograms independently correlated with breast cancer
risk, enhancing the ability to differentiate future breast cancer cases from non-cancer cases.

In 2019, Yala et al. used a CNN-based model trained with 88,994 screening mammo-
grams from 39,571 women to model breast cancer risk [18]. The model utilized a CNN
model fused with a risk-factor-based logistic regression model using traditional risk factors
such as age, weight, height, menarche age, menopausal status, family history, BRCA status,
history of atypia, and breast density. The model was compared against established breast
cancer risk model that included breast density (Tyrer—-Cuzick model, version 8). The image-
only DL model showed an AUC of 0.68, RF-LR showed an AUC of 0.67, and TC showed an
AUC of 0.62. The hybrid model achieved the highest AUC of 0.70. The study showed that a
DL model that directly utilized the mammographic imaging data outperformed the clinical
risk model Tyrer—-Cuzick(TC) model (version 8). Lehman et al. [27] later compared this
hybrid model with National Cancer Institute Breast Cancer Risk Assessment Tool (BCRAT)
and TC on a dataset of 119,139 bilateral screening mammograms from 57,617 consecutive
patients. The calculated AUC 0.68 of the deep learning model was higher than TC 0.57
and BCRAT 0.57 models. These studies showed the consistent outperformance of current
clinical risk models by DL-based models.
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Dembrower et al. also evaluated a CNN-based model to predict breast cancer risk [16]
on 1466 mammogram studies from 278 women with breast cancer diagnosis and 12,568 stud-
ies from 2005 women with no known cancer. Each study in this dataset from Karolinska
University Hospital, Sweden, consisted of a standard four-view full field digital mammo-
graphic study. Percent density and dense area metrics were calculated via LIBRA (UPenn)
automated quantitative analysis. CNN-based 5-year risk scores for cancer development
were modeled with the Inception Resnet V2 architecture using the 4-view mammographic
images as well as age at acquisition, exposure, mA, breast thickness, and compression force.
The non-image data were incorporated as auxiliary inputs of the Inception architectures
during training. The DL model (AUC of 0.65) outperformed percent density (AUC of
0.57) and dense area (AUC of 0.60), while yielding the lowest false negative rate (FNR,
31%) compared to dense area (FNR, 36%) and percentage density (FNR, 39%). The study
concluded that a DL model can more accurately predict which women are at risk for fu-
ture breast cancer compared with traditional percent density measurements, with a lower
false-negative rate, particularly for more aggressive cancers.

Zhu et al. (2021) used deep learning (DL) models to estimate the risk of interval and
screening-detected breast cancers, considering clinical risk factors [28]. The study used
25,096 mammograms from 6369 women, of whom 1609 would develop screening-detected
breast cancer and 351 would develop interval invasive breast cancer. The study compared
the performance of a clinical risk factor model that, in part, utilized the radiologist reported
breast imaging reporting and data system (BI-RADS) density with a CNN that utilized a
DenseNet-121 architecture to calculate features for each view and average pooled features
from all views to predict cancer risk. Comparing screening-detected cancer versus matched
controls, the CNN model achieved a C-index of 0.66. The clinical model had a C-index of
0.62 and the combined CNN clinical model had a C-index of 0.66. When comparing patients
with interval cancer versus controls, the CNN achieved a C-index of 0.64. The clinical
model with BI-RADS density had a C-index of 0.71. The combined DL and clinical risk
factors model yielded a C statistic of 0.72. The P values indicated that the DL model’s ability
to detect screen and interval cancer was superior to the BI-IRADS model (p = 0.99, p = 0.002,
respectively), but inferior to the combined model (p = 0.03). The CNN outperformed
the clinical risk factors model in determining screening-detected cancer risk. However,
the CNN performed poorer for determining interval cancer risk compared to clinical
risk factors.

In a follow up validation study published in 2022 by Yala et al., their DL risk model,
Mirai, was tested on 128,793 mammograms from a globally diverse cohort of 62,185 pa-
tients [29]. Like the previous study, a standard mammographic exam as well as clinical risk
factors were used to train the model. If the clinical risk factors were not available, the DL
model would predict the risk based on only the mammographic data. Imaging, pathology
results, and risk factors were collected from Massachusetts General Hospital, USA; Novant,
USA; Emory, USA; Maccabi-Assuta, Israel; Karolinska, Sweden; Chang Gung Memorial
Hospital, Taiwan; and Barretos, Brazil. The study validated the DL model performance in
identifying high-risk patients across diverse cohorts. A sub analysis also showed similar
performance of the DL model across a diverse racial population including African Amer-
ican and Caucasian patients. A concordance index (c-index), the generalization of AUC,
showed the weighted performance of the predicted 1-5 year cancer risk.

A summary of the cohort sizes and performance metrics for the CNN-based breast
cancer risk model studies are shown below in Table 1. Overall, the fusion techniques of
CNN s and traditional features such as risk factor regression models and computed textures
were the best performing models. The performance of CNN and clinical models started
at parity and current CNN models consistently outperformed existing models. Due to
the open source nature of the model used by Yala [18], its logical architecture and good
performance, it is the most widely validated model to date.
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Table 1. Performance of studies utilizing CNN models in characterizing breast cancer risk from
mammographic examinations. Parenthetical numbers indicate the number of examinations or patients
that were diagnosed with breast cancer within 5 years. Only convolutional layers are counted for
methods. Abbreviations: risk factors (RF), conventional texture analysis (CTA).

Exams Patients Metric Method
Arefan, 2020 [20] 226 226 (113) 0.73 AUC InceitLi";f’leéNN
Gastounioti, 2018 [24] 424 424 (106) 0.90 AUC CNI\QI Iﬁ]ﬁrcT A
Li, 2017 [25] 456 456 (75) 0.84 AUC 8 Layer CNN
21 Layer
Ha, 2019 [30] 1474 737 (210) 0.72 Accuracy Resnet CNN
Kallenberg, 2016 [21] 2069 2069 (394) 0.57 AUC 4 Layer CNN
Zhu, 2021 [28] 6369 6369 (278) 0.72 C-index 4 Layer CNN
Dembrowser, 2020 [16] 14,034 2283 (278) 0.65 AUC Inceptionv2 CNN+RF
. 21 Layer
Michel, 2023 [23] 23,467 (121) 0.654 AUC Resnet CNN
McKinney, 2020 [31] 28,953 (1100) 0.889 AUC DL model
Yala, 2019 [18] 88,994 39,571 0.70 AUC 19 Layer Resnet CNN
with transformers +RF
Wanders, 2018 [26] 51,400 (898) 51,400 (898) 0.61 C-index 3 Layer CNN
L 19 Layer Resnet CNN
ehman, 2022 [27] 119,139 57,635 0.68 AUC .
with transformers +RF

Yala, 2022 [29] 19 Layer Resnet CNN

MGH 25,855 (588) 7005 (233) 0.75 C-index with transformers +RF

Novant 14,157 (235) 5887 (123) 0.75 C-index

Emory 44,008 (1003) 16,495 (495) 0.77 C-index

Maccabi Assuta 6187 (186) 6189 (186) 0.77 C-index

Karolinska 19,328 (1413) 7353 (799) 0.81 C-index

CGMH 13,356 (244) 13,356 (244) 0.79 C-index

Barretos 5900 (146) 5900 (146) 0.84 C-index

3.3. Nowvel Applications of DL Models beyond Screening

Several studies showed novel applications of DL breast cancer risk models beyond
screening. In 2021, Manley et al. designed a DL model to score risk [19]. Changes in
risk score in women who underwent risk-reducing chemoprevention treatment such as
Tamoxifen or Aromatase Inhibitors was evaluated. Of 541 patients in the study, 184 patients
underwent chemoprevention treatment and 357 patients did not. The study showed that
significantly more treated women decreased their breast cancer risk score compared to the
controls. The score correlated negatively with chemoprevention treatment (p = 0.02). The
study showed DL-based risk scores declined significantly with treatment. This method-
ology can be used to assess the efficacy of known chemoprevention agents as well as in
testing new chemoprevention strategies.

In 2022, McGuinness et al. showed that DL-based risk models could be used to predict
breast cancer relapse among women with operable hormone receptor (HR)-positive breast
cancer [32]. In this retrospective study, the model was trained on data from women with
stage I-I1I, HR-positive unilateral breast cancer diagnosed at their institution. Patients who
received adjuvant endocrine therapy and had at least two mammograms (baseline, annual
follow-up) of the contralateral unaffected breast were included in the study. Among the
848 women followed for a median of 59 months, there were 67 (7.9%) breast cancer relapses.
A significant difference was observed in the mean absolute change in CNN risk score
from baseline to 1-year follow-up between those who relapsed and those who remained
in remission (0.001 vs. —0.022, p = 0.030). The study showed that short-term changes in
the DL risk score in patients undergoing adjuvant endocrine therapy were associated with
breast cancer-free interval and had potential to predict breast cancer relapse.
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4. Discussion
4.1. Screening Implications

The use of CNN-based risk models in breast cancer screening holds implications for
improving screening strategies. Supplementary screening was supported for intermediate
and high-risk women that may benefit from additional follow up.

Breast cancer risk assessment is a critical component of comprehensive screening
programs. It helps identify individuals who would benefit from early and supplemental
screening, genetic testing, and preventive therapies, while aiding the general population
in making informed screening decisions. Existing clinical algorithms, such as modified
Gail/BCRAT, BCSC, and Tyrer—Cuzick exhibited varying performances. Their perfor-
mances were measured by the area under the receiver operating characteristic curve (AUC),
with values ranging from 0.57 to 0.82 [11].

Studies showed that deep learning-based models, incorporating traditional risk factors
and mammographic images, can enhance existing epidemiology-based models. CNN
models applied to datasets from MGH, Novant, Emory, Maccabi Assuta, Karolinska,
CGMH, and Barretos reported C-index values ranging from 0.75 to 0.84 [29].

With approximately 39 million women undergoing mammograms annually in the
United States, confusion persists among clinicians and patients regarding the optimal
timing and frequency of screening. DL-based risk models emerged as potential tools
to predict individual breast cancer risk and guide screening regimens. The agreement
between CNN-validated algorithms and clinical models is at least on par, highlighting the
potential of CNN-based models in enhancing breast cancer risk assessment and informing
screening decisions.

4.2. Summary and Future Direction

Current screening and treatment guidelines assess risk from largely non-imaging
risk factors such as patient demographics, family history of breast cancer, and genetic
predisposition. Higher mammographic breast density is associated with higher risk, and
a measurement of breast density is being incorporated into the latest clinical risk models
such as the Tyrer—Cuzick model (version 8).

Convolutional neural networks (CNNs) demonstrated their effectiveness in addressing
classification problems and were proven to be efficient image extractors for mammographic
and other radiologic imaging biomarkers. One notable advantage of CNNss is their ability
to be fused with established clinical risk factors such as hormone status and genetics.
Extensive large-scale validation studies already indicated that CNN models perform with
C-index values ranging from 0.75 to 0.84 [29] on large scale validation, which is on par with
existing clinical risk models shown to perform with AUC between 0.57 and 0.82 [11], mark-
ing a significant achievement. However, there is still considerable room for improvement,
suggesting the potential for further enhancements in CNN-based risk assessment models.

The 2022 validation study by Yala et al. [29] remains the largest of its kind, though it
had some limitations. The model was trained on data from a single institution, sampling a
limited patient population and homogenous clinical protocols. The model was also trained
on mammograms from a single vendor. This necessitates validation on imaging from other
vendors, as vendors use different anodes, filtration, and receptors in their acquisition. A
retraining of the model with the combined datasets would likely improve performance
and generalizability.

Beyond mammography, tomosynthesis is now widely available and routinely col-
lected alongside 2D mammograms. CNNs will be able to utilize both the 3D and 2D
imaging to further improve risk models. The power of CNNs scales with dimension, and
tomosynthesis powered CNNs will eventually outperform 2D mammography powered
CNNs. All models will need to be externally validated and prove generalizability before
widespread adoption.

Overall, deep learning models outperformed the clinical models currently in use,
though these models were found to be in the validation stages of development. With



Tomography 2023, 9 1118

concordance indices averaging 0.78 [29], where an AUC of 0.7 or higher was generally
considered acceptable for a risk prediction model to be useful, there is still much room for
improvement and many new datasets to train with. The application of these models could
help fine tune screening practices beyond traditional risk factors, which apply to broad
populations and qualitative imaging characteristics.
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